

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

III Year - I Semester	\mathbf{L}	T	P	C
	3	0	0	3

ELECTRONIC MEASUREMENTS & INSTRUMENTATION

Course Objectives:

- Learn and understand functioning of various measuring system and metrics for performance analysis.
- Acquire knowledge of principle of operation, working of different electronic
- Instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
- To Compare various measuring bridges and their balancing conditions.
- Learn and understand the use of various measuring techniques for measurement of different physical parameters using different classes oftransducers.

UNIT I

Performance characteristics of instruments, Static characteristics; Accuracy, Resolution, Precision, Expected value, Error, Sensitivity. Dynamic Characteristics; speed of response, Fidelity, Lag and Dynamic error. Types of errors in measurements and their analysis. Design of multi-range AC, DC meters (voltmeter & ammeter) and ohmmeter (series & shunt type) using D'arsonval movement. True rms meter.

UNIT II

Specifications and designing aspects of Signal Generators - AFsine and square wave signal generators, Function Generators, Random noise generators, Arbitrary waveform generators. Wave Analyzers, Harmonic Distortion Analyzers, Spectrum Analyzers, Digital FourierAnalyzers.

UNIT III

Oscilloscopes- general purpose CROs; block diagram , functions and implementation of various blocks, specifications, various controls and their functions , types of probes used in CROs. Measurement of frequency and phase difference using Lissajous patterns.

Special purpose CROs; sampling oscilloscope, analog storage oscilloscope, digital storage oscilloscope.

UNIT IV

Bridge circuits- Wheat stone bridge, measurement of very low resistance, Measurement of inductance- Maxwell's bridge, Anderson bridge. Measurement of capacitance-Schearing Bridge. Wien Bridge, Errors and precautions in using bridges.

Q-meter; principle of operation, measurement methods and sources of errors.

Counters: principle of operation -modes of operation- totalizing mode, frequency mode and time period mode- sources of errors.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT V

Transducers- active & passive transducers: Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers.

Measurement of physical parameters temperature, force, pressure, velocity, acceleration and displacement.

TEXTBOOKS:

- 1. Electronic instrumentation, second edition H.S. Kalsi, Tata McGrawHill,2004.
- 2. Modern Electronic Instrumentation and Measurement Techniques A.D. Helfrickand W.D. Cooper, PHI, 5th Edition, 2002.

REFERENCES:

- 1. Electronic Instrumentation & Measurements David A. Bell, PHI, 3rd Edition,2013.
- 2. Electrical and Electronic Measurement and Instrumentation A.K. Sawhney. Dhanpat Rai & Co, 12thEdition,2002.

Course Outcomes:

The student will be able to

- Select the instrument to be used based on therequirements.
- Understand and analyze different signal generators and analyzers.
- Understand the design of oscilloscopes for different applications.
- Design different transducers for measurement of different parameters.